Hydrologic, Edaphic, and Vegetative Responses to Microtopographic Reestablishment in a Restored Wetland
نویسندگان
چکیده
Microtopography is a characteristic feature of many natural wetlands that is commonly lacking in restored wetlands (RWs). Consequently, it has been suggested that microtopography must be reestablished in RWs to accelerate the development of wetland function. The objective of this research was to examine responses of hydrology, soils, and vegetation to microtopographic reestablishment at a 3-year-old RW site in North Carolina. Microtopography was reestablished by configuring hummocks (mounds) and hollows (depressions), on otherwise level terrain (flats) of intermediate elevation. For most of the 2003 growing season, mean water table depths were below the soil surface in the flats and 10 cm above the soil surface in the hollows. Analysis of variance revealed significant microtopography by time interactions for soil temperature (p < 0.05) and moisture (p < 0.001), indicating that differences between zones were not consistent throughout the growing season. Hummocks had significantly higher nitrate (p < 0.0001) and ammonium (p 1⁄4 0.001) than flats and hollows for most of the growing season. Differences in microbial biomass carbon and denitrification enzyme activity across the microtopographic zones were not detected. Plant species richness was significantly different (p < 0.001) across the microtopographic zones, with hummocks < hollows < flats. Flats supported the greatest numbers of wetland species. Aboveground biomass differed significantly (p < 0.001) across the microtopographic zones and followed a different pattern than richness: hummocks < flats < hollows, owing to the growth of emergent wetland herbs in hollows.
منابع مشابه
Hydrologic, Edaphic, and Vegetative Response to Microtopographic Reestablishment in a Restored Wetland
متن کامل
Response of Arbuscular Mycorrhizal Fungi to Hydrologic Gradients in the Rhizosphere of Phragmites australis (Cav.) Trin ex. Steudel Growing in the Sun Island Wetland
Within the rhizosphere, AM fungi are a sensitive variable to changes of botanic and environmental conditions, and they may interact with the biomass of plant and other microbes. During the vegetative period of the Phragmites australis growing in the Sun Island Wetland (SIW), the variations of AM fungi colonization were studied. Root samples of three hydrologic gradients generally showed AM fung...
متن کاملPhosphorus export from a restored wetland ecosystem in response to natural and experimental hydrologic fluctuations
[1] Wetland restoration is a commonly used approach to reduce nutrient loading to freshwater and coastal ecosystems, with many wetland restoration efforts occurring in former agricultural fields. Restored wetlands are expected to be effective at retaining or removing both nitrogen and phosphorus (P), yet restoring wetland hydrology to former agricultural fields can lead to the release of legacy...
متن کاملHydrologic Processes in the Pinyon-Juniper Woodlands: A Literature Review
Hydrologic processes in the pinyon-juniper woodlands of the western region of the United States are variable because of the inherent interactions among the occurring precipitation regimes, geomorphological settings, and edaphic conditions that characterize the ecosystem. A wide range of past and present land-use practices further complicates comprehensive evaluations of these hydrologic process...
متن کاملInteraction and spatial distribution of wetland nitrogen processes
A spatially-explicit, two-dimensional model was developed to evaluate the processes which determine the fate and transport of nitrogen (N) in wetland systems. The wetland soil profile was partitioned into floodwater, and aerobic, and anaerobic soil layers, with diffusion and settling accounting for the transport of N between layers. Nitrogen transformations considered in the model were; enzyme ...
متن کامل